Ground joinability and connectedness in the superposition calculus

André Duarte Konstantin Korovin

andrepd@protonmail.com

8th August 2022

The University of Manchester

Equational completion $l \approx r \quad s[u] \approx t$ $(s[u \mapsto r] \approx t)\theta$

$$
\begin{aligned} \text{Equational completion} \\ \frac{l \approx r \quad s[u] \approx t}{(s[u \mapsto r] \approx t)\theta} \end{aligned}
$$

Resolution $p \vee C \hspace{0.3cm} \neg q \vee D$ $(C \vee D) \theta$

Equational completion
\n
$$
\frac{l \approx r \quad s[u] \approx t}{(s[u \mapsto r] \approx t)\theta}
$$

$$
\begin{array}{c}\text{Resolution}\\ \underline{p \lor C \quad \neg q \lor D} \\ \hline (C \lor D)\theta \end{array}
$$

Problem: Superposition when reduced to unit equalities is not equivalent to equational completion!

 \mathfrak{D}

Problem: Superposition when reduced to unit equalities is not equivalent to equational completion!

 \mathfrak{D}

Problem: Superposition when reduced to unit equalities is not equivalent to equational completion!

- Best provers for UEQ (CASC/21):
	- Twee (completion)
	- E (superposition)
	- Waldmeister (completion)

Best provers for FOF (CASC/21):

- Vampire (superposition)
- iProver (inst-gen & superposition)
- E (superposition)

 \mathcal{D}

Problem: Superposition when reduced to unit equalities is not equivalent to equational completion!

Best provers for UEQ (CASC/21):

- Twee (completion)
- E (superposition)
- Waldmeister (completion)

Best provers for FOF (CASC/21):

- Vampire (superposition)
- iProver (inst-gen & superposition)
- E (superposition)

Reasons (among others): ground joinability, critical pair criteria, stronger simplification.

• Proof of completeness of superposition, wrt. closure redundancy

- Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)

- Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)
- Completeness of simplification rules:

- Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)
- Completeness of simplification rules:
	- Ground joinability

- Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)
- Completeness of simplification rules:
	- Ground joinability
	- Connectedness

- Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)
- Completeness of simplification rules:
	- Ground joinability
	- Connectedness
	- Ground connectedness

- • Proof of completeness of superposition, wrt. closure redundancy
- Demodulation strenghtened to encompassment demodulation (generalisation of simplfication from eq. completion)
- Completeness of simplification rules:
	- Ground joinability
	- Connectedness
	- Ground connectedness
- Practical algorithm for checking ground joinability

Redundancy:

All instances of C follow from smaller instances in S

 \implies Clause C redundant wrt. S

=⇒

Refutational completeness

Redundancy [\[DK21\]](#page-67-0):

All ground closures of C follow from smaller ground closures in S Clause C closure redundant wrt. S

Redundancy [\[DK21\]](#page-67-0):

All ground closures of C follow from smaller ground closures in S =⇒ Clause C closure redundant wrt. S

Ground closure $=$ \langle clause, grounding substitution \rangle .

Model construction proof is based on an ordering on ground closures.

 Δ

Redundancy [\[DK21\]](#page-67-0):

All ground closures of C follow from smaller ground closures in S =⇒ Clause C closure redundant wrt. S

Ground closure $= \langle$ clause, grounding substitution \rangle . Model construction proof is based on an ordering on ground closures.

> Main idea: more general instances of terms, literals, clauses, should be smaller.

Theorem

The superposition calculus is refutationally complete wrt. closure redundancy: a set of clauses, where the conclusion of all non-redundant inferences with premises in the set is also in the set or redundant, is satisfiable.

$$
\text{Demodulation} \qquad \frac{l \approx r \quad C[l\theta]}{C[l\theta \mapsto r\theta]}, \quad \text{where } l\theta \succ r\theta, \quad \text{and } C \prec (l\theta \approx r\theta)
$$

[Ground joinability and connectedness in the superposition calculus](#page-0-0) André Duarte · 8/Aug/2022

Encompassment Demodulation

$$
\frac{l \approx r \quad C[l\theta]}{C[l\theta \mapsto r\theta]},
$$

where $l\theta \succ r\theta$, and either C is not a positive unit or (let $C = s[l\theta] \approx t$) $l\theta \neq s$ or $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

Encompassment Demodulation

$$
\frac{l \approx r \quad C[l\theta]}{C[l\theta \mapsto r\theta]},
$$

where $l\theta \succ r\theta$, and either C is not a positive unit or (let $C = s[l\theta] \approx t$) $l\theta \neq s$ or $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

where
$$
l\theta \succ r\theta
$$
, and
\nDenompassment $\frac{l \approx r \ C[l\theta]}{C[l\theta \mapsto r\theta]}$, either C is not a positive unit
\nor $(let C = s[l\theta] \approx t) l\theta \neq s$
\nor $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

Strict generalisation of "simplify with oriented rule" of eq. completion!

where
$$
l\theta \succ r\theta
$$
, and
\nDenompassment $\frac{l \approx r \ C[l\theta]}{C[l\theta \mapsto r\theta]}$, either C is not a positive unit
\nor $(let C = s[l\theta] \approx t) l\theta \neq s$
\nor $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

Strict generalisation of "simplify with oriented rule" of eq. completion! Examples:

- $f(x) \approx b$ can rewrite $f(a) \approx c$, even if $b \succ c$
- $f(a) \approx b$ can rewrite $(f(a) \approx c \vee f(a) \approx d)$, even if $b \succ c$ and $b \succ d$

where
$$
l\theta \succ r\theta
$$
, and
\n**Denompassment** $\frac{l \approx r \ C[l\theta]}{C[l\theta \mapsto r\theta]}$, either C is not a positive unit
\nor $(let C = s[l\theta] \approx t) l\theta \neq s$
\nor $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

Strict generalisation of "simplify with oriented rule" of eq. completion! Examples:

- $f(x) \approx b$ can rewrite $f(a) \approx c$, even if $b \succ c$
- $f(a) \approx b$ can rewrite $(f(a) \approx c \vee f(a) \approx d)$, even if $b \succ c$ and $b \succ d$ Neither are allowed in "usual" demodulation.

where
$$
l\theta \succ r\theta
$$
, and
\n**Denompassment** $\frac{l \approx r \ C[l\theta]}{C[l\theta \mapsto r\theta]}$, either C is not a positive unit
\nor $(let C = s[l\theta] \approx t) l\theta \neq s$
\nor $l\theta \sqsupset l$ or $s \prec t$ or $r\theta \prec t$

Strict generalisation of "simplify with oriented rule" of eq. completion! Examples:

- $f(x) \approx b$ can rewrite $f(a) \approx c$, even if $b \succ c$
- $f(a) \approx b$ can rewrite $(f(a) \approx c \vee f(a) \approx d)$, even if $b \succ c$ and $b \succ d$ Neither are allowed in "usual" demodulation. (Also faster to check)

Ground ioinability and connectedness in the superposition calculus $A = 4$ André Duarte $\cdot 8/A$ ug/2022

Theorem

Encompassment demodulation is a closure redundancy of the superposition calculus.

In equational completion:

 $E \cup \{s \approx t\} \models E$, if all ground $s\sigma \downarrow \succ_E t\sigma$

 $(\downarrow_{\geq E})$: joinable using smaller equations in E, for definition see [\[MN90\]](#page-67-1))

In equational completion:

$$
E \cup \{s \approx t\} \models E, \quad \text{if all ground } s\sigma \downarrow_{\succ E} t\sigma
$$

 $(\downarrow_{\geq E}$: joinable using smaller equations in E, for definition see [\[MN90\]](#page-67-1))

Example:

•
$$
\{xy \approx yx, (xy)z \approx x(yz)\} \cup \{x(yz) \approx z(\overline{xy})\}
$$

In equational completion:

 $E \cup \{s \approx t\} \models E$, if all ground $s\sigma \downarrow \succ_E t\sigma$

 $(\downarrow_{\geq E}$: joinable using smaller equations in E, for definition see [\[MN90\]](#page-67-1))

Example:

• $\{xy \approx yx, (xy)z \approx x(yz)\} \cup \{x(yz) \approx z(\overline{xy})\}$

The proofs of correctness rely on the proof orderings technique.

In equational completion:

 $E \cup \{s \approx t\} \models E$, if all ground $s\sigma \downarrow \succ_E t\sigma$

 $(\downarrow_{\geq E}$: joinable using smaller equations in E, for definition see [\[MN90\]](#page-67-1))

Example:

• $\{xy \approx yx, (xy)z \approx x(yz)\} \cup \{x(yz) \approx z(\overline{xy})\}$

The proofs of correctness rely on the proof orderings technique. \implies Ground joinability wasn't available for superposition provers.

Ground joinability

$$
\frac{s \approx t \lor C \quad S}{c}, \quad \text{where all } s \sigma \downarrow t \sigma \text{ in } s \approx t \lor C \text{ wrt. } S
$$

$$
\frac{s \not\approx t \lor C \quad S}{C}, \quad \text{where all } s \sigma \downarrow t \sigma \text{ in } s \not\approx t \lor C \text{ wrt. } S
$$

 (ξ) : joinable using smaller equations in S, for definition see [\[DK22\]](#page-67-2)) Generalisation of ground completeness for full clauses

 Q

Theorem

Ground joinability is a closure redundancy of the superposition calculus. (In superposition, deleting/simplifying clauses with ground joinable literals does not compromise refutational completeness.)

[Ground joinability and connectedness in the superposition calculus](#page-0-0) André Duarte · 8/Aug/2022

If two (non-ground) terms are joinable under every preorder among their variables, then they are ground joinable.

Naïve algorithm is $\mathcal{O}(n!e^n)$.

If two (non-ground) terms are joinable under every preorder among their variables, then they are ground joinable.

Naïve algorithm is $\mathcal{O}(n!e^n)$.

Joinability under a partial $\succeq_v \implies$ joinability under all total $\succeq'_v \supseteq \succeq_v.$

If two (non-ground) terms are joinable under every preorder among their variables, then they are ground joinable.

Naïve algorithm is $\mathcal{O}(n!e^n)$.

Joinability under a partial $\succeq_v \implies$ joinability under all total $\succeq'_v \supseteq \succeq_v.$

So the question is to choose which preorders to check, and when to stop.

If two (non-ground) terms are joinable under every preorder among their variables, then they are ground joinable.

Naïve algorithm is $\mathcal{O}(n!e^n)$.

Joinability under a partial $\succeq_v \implies$ joinability under all total $\succeq'_v \supseteq \succeq_v.$

So the question is to choose which preorders to check, and when to stop. Goals:

- If terms are ground joinable: conclude this with the least number of preorders possible
- If terms are not ground joinable: find a preorder to disprove it as soon as possible

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Start with base ordering $z(x(yx)) \approx z(xy) \implies \Rightarrow \Rightarrow_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce $z(x(yx)) \approx z(xy) \implies \Rightarrow \Rightarrow_t \qquad$ Queue:

[Ground joinability and connectedness in the superposition calculus](#page-0-0) $Andr\acute{e}$ Duarte · 8/Aug/2022

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Try to rewrite with extension $z(x(yx)) \approx z(xy)$ $\bigcup \{x \prec y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Try to rewrite with extension $z(x(xy)) \approx z(xy) \implies \geq \geq t$ $\bigcup \{x \prec y\}$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce

$$
z(x(xy)) \approx z(xy) \qquad \qquad \succ = \succ_t \qquad \qquad \text{Queue:}
$$

$$
\qquad \qquad \cup \{x \prec y\}
$$

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce

 $z(xy) \approx z(xy)$ $\bigcup \{x \prec y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Same normal form: add orders not covered to queue $z(xy) \approx z(xy)$ $\bigcup \{x \prec y\}$ $x \sim y$ $\succ = \succ_t$ Queue: $x \succ u$

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Get ordering from queue $z(x(yx)) \approx z(xy)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Reduce $z(x(yx)) \approx z(xy)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Reduce $z(x(yx)) \approx z(yx)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Reduce $z(x(yx)) \approx z(yx)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Reduce $z(y(xx)) \approx z(yx)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Reduce $z(y(xx)) \approx z(yx)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Same normal form: add orders not covered to queue $z(yx) \approx z(yx)$ $\bigcup \{x \succ y\}$ $x \sim y$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Get ordering from queue
\n
$$
z(x(yx)) \approx z(xy) \qquad \qquad \succ = \succ_t \qquad \qquad \text{Queue:}
$$
\n
$$
\cup \{x \sim y\}
$$

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce $z(x(xx)) \approx z(xx)$ $\bigcup \{x \sim y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce $z(x(xx)) \approx z(xx)$ $\bigcup \{x \sim y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$ Reduce $z(xx) \approx z(xx)$ $\bigcup \{x \sim y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Same normal form: add orders not covered to queue $z(xx) \approx z(xx)$ $\cup \{x \sim y\}$ $\succ = \succ_t$ Queue:

Example: $S = \{xy \approx yx, x(yz) \approx y(xz), xx \approx x, x(xy) \approx xy\}$

• $z(x(yx)) \approx z(xy)$

Queue empty: ground joinable $z(xx) \approx z(xx)$ $\bigcup \{x \sim y\}$ $\succ = \succ_t$ Queue:

Critical pair criteria. In equational completion, if $s \leftarrow u \rightarrow t$ [\[BD88\]](#page-67-3):

$$
E \cup \{s \approx t\} \models E, \quad \text{if } s \leftrightarrow_E v_1 \leftrightarrow_E \cdots \leftrightarrow_E v_n \leftrightarrow_E t
$$

with $v_1, \ldots, v_n \prec u$

i.e. we can rewrite in *opposite* direction (\succ) if still smaller than u .

Critical pair criteria. In equational completion, if $s \leftarrow u \rightarrow t$ [\[BD88\]](#page-67-3):

$$
E \cup \{s \approx t\} \models E, \quad \text{if } s \leftrightarrow_E v_1 \leftrightarrow_E \cdots \leftrightarrow_E v_n \leftrightarrow_E t
$$

with $v_1, \ldots, v_n \prec u$

i.e. we can rewrite in *opposite* direction (\succ) if still smaller than u. Example:

•
$$
S = \{x + y \approx y + x, x + (y + \overline{x}) \approx 1, x \cdot (x + y) \approx x, ... \}
$$

 $x + (\overline{x} + y) \leftarrow x + (\overline{x} \cdot y) \rightarrow 1$

Critical pair criteria. In equational completion, if $s \leftarrow u \rightarrow t$ [\[BD88\]](#page-67-3):

$$
E \cup \{s \approx t\} \mid E, \quad \text{if } s \leftrightarrow_E v_1 \leftrightarrow_E \cdots \leftrightarrow_E v_n \leftrightarrow_E t
$$
\n
$$
\text{with } v_1, \ldots, v_n \prec u
$$

i.e. we can rewrite in *opposite* direction (\succ) if still smaller than u. Example:

•
$$
S = \{x + y \approx y + x, x + (y + \overline{x}) \approx 1, x \cdot (x + y) \approx x, ... \}
$$

\n $x + (\overline{x} + y) \leftarrow x + (\overline{x} \cdot y) \rightarrow 1$
\n $x + (\overline{x} + y) \xleftarrow{x + y \approx y + x} x + (y + \overline{x}) \xleftarrow{x + (y + \overline{x}) \approx 1} 1$

[Ground joinability and connectedness in the superposition calculus](#page-0-0) $Andr\acute{e}$ Duarte · 8/Aug/2022

Critical pair criteria. In equational completion, if $s \leftarrow u \rightarrow t$ [\[BD88\]](#page-67-3):

$$
E \cup \{s \approx t\} \mid E, \quad \text{if } s \leftrightarrow_E v_1 \leftrightarrow_E \cdots \leftrightarrow_E v_n \leftrightarrow_E t
$$
\n
$$
\text{with } v_1, \ldots, v_n \prec u
$$

i.e. we can rewrite in *opposite* direction (\succ) if still smaller than u. Example:

•
$$
S = \{x + y \approx y + x, x + (y + \overline{x}) \approx 1, x \cdot (x + y) \approx x, ... \}
$$

\n $x + (\overline{x} + y) \leftarrow x + (\overline{x} \cdot y) \rightarrow 1$
\n $x + (\overline{x} + y) \xleftarrow{x + y \approx y + x} x + (y + \overline{x}) \xleftarrow{x + (y + \overline{x}) \approx 1} 1$

[Ground joinability and connectedness in the superposition calculus](#page-0-0) $Andr\acute{e}$ Duarte · 8/Aug/2022

In superposition a analogous criteria exists. Generating inferences

Superposition
$$
\frac{l \approx r \vee C \quad s[u] \approx t \vee D}{(s[u \mapsto r] \approx t \vee C \vee D)\rho}
$$

where $s[u \mapsto r]\rho$ and t ρ are connected under $\{l \approx r \vee C, s \approx t \vee D\}$ and unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S. (connected: generalisation of criterion for completion, for definition see [\[DK22\]](#page-67-2))

In superposition a analogous criteria exists. Generating inferences

Superposition
$$
\frac{l \approx r \vee C \quad s[u] \approx t \vee D}{(s[u \mapsto r] \approx t \vee C \vee D)\rho}
$$

where $s[u \mapsto r]\rho$ and t ρ are connected under $\{l \approx r \vee C, s \approx t \vee D\}$ and unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S. (connected: generalisation of criterion for completion, for definition see [\[DK22\]](#page-67-2))

Redundant clause: can be deleted in any context & used for simplifications Conclusion of redundant inference: can be deleted in that context only.

Theorem

Connectedness is a closure redundancy of the superposition calculus. (In superposition, inferences where the conclusion is connected under the premises can be skipped without compromising refutational completeness.)

Summary

- Encompassment demodulation is a redundancy of superposition
	- Superposition calculus with encomp. demod. and tautology deletion is equivalent to unfailing completion on unit equations
- Ground joinability is a redundancy of superposition
- Connectedness is a redundancy of superposition
- Implementing ground joinability in iProver (using our algorithm) increases the overall number of problems solved and solves hitherto unsolved problems

References

- [BD88] Leo Bachmair and Nachum Dershowitz. "Critical Pair Criteria for Completion". In: Journal of Symbolic Computation (1988).
- [MN90] Ursula Martin and Tobias Nipkow. "Ordered rewriting and confluence". In: 10th International Conference on Automated Deduction. 1990.
- [DK21] André Duarte and Konstantin Korovin. "AC Simplifications and Closure Redundancies in the Superposition Calculus". In: Automated Reasoning with Analytic Tableaux and Related Methods – 30th International Conference, TABLEAUX, Proceedings. 2021.
- [DK22] André Duarte and Konstantin Korovin. "Ground Joinability and Connectedness in the Superposition Calculus". In: Automated Reasoning – 11th International Joint Conference, IJCAR, Proceedings. 2022.

[Ground joinability and connectedness in the superposition calculus](#page-0-0) $Andr\acute{e}$ Duarte · 8/Aug/2022