
Implementing superposition in iProver
(System description)

André Duarte and Konstantin Korovin
{andre.duarte,konstantin.korovin}@manchester.ac.uk

4th July 2020



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.
• Refutationally complete.
• Powerful redundancy checks.
• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.
• Instantiation calculus, modular architecture.

• Refutationally complete.
• Powerful redundancy checks.
• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.
• Instantiation calculus, modular architecture.
• Refutationally complete.

• Powerful redundancy checks.
• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.
• Instantiation calculus, modular architecture.
• Refutationally complete.
• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.
• Instantiation calculus, modular architecture.
• Refutationally complete.
• Powerful redundancy checks.
• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

iProver

• iProver is an automated theorem prover for first-order logic.
• Instantiation calculus, modular architecture.
• Refutationally complete.
• Powerful redundancy checks.
• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

1



Introduction Superposition AC symbols

Motivation

• No single calculus is optimal.
◦ Some problems are solved easily by some techniques and not at all by

others.

• Performance degrades very fast.
◦ Half of problems that are solved in < 5min are solved in ∼ 1 s.
◦ ∼ 90% of problems that are solved in < 5min are solved in < 30 s.

• In iProver, clauses are shared for simplifications.

Corollary:

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

2



Introduction Superposition AC symbols

Motivation

• No single calculus is optimal.
◦ Some problems are solved easily by some techniques and not at all by

others.

• Performance degrades very fast.
◦ Half of problems that are solved in < 5min are solved in ∼ 1 s.
◦ ∼ 90% of problems that are solved in < 5min are solved in < 30 s.

• In iProver, clauses are shared for simplifications.

Corollary:

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

2



Introduction Superposition AC symbols

Motivation

• No single calculus is optimal.
◦ Some problems are solved easily by some techniques and not at all by

others.

• Performance degrades very fast.
◦ Half of problems that are solved in < 5min are solved in ∼ 1 s.
◦ ∼ 90% of problems that are solved in < 5min are solved in < 30 s.

• In iProver, clauses are shared for simplifications.

Corollary:

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

2



Introduction Superposition AC symbols

Motivation

• No single calculus is optimal.
◦ Some problems are solved easily by some techniques and not at all by

others.

• Performance degrades very fast.
◦ Half of problems that are solved in < 5min are solved in ∼ 1 s.
◦ ∼ 90% of problems that are solved in < 5min are solved in < 30 s.

• In iProver, clauses are shared for simplifications.

Corollary:

It’s better to run many strategies for a shorter time
than one strategy for a long time.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

2



Introduction Superposition AC symbols

Superposition — generating inferences

Superposition
l = r ∨ C t[s]

.
= u ∨D

(t[s 7→ r]
.
= u ∨ C ∨D)θ

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s not a variable,

Eq. Resolution
l 6= r ∨ C

Cθ

where θ = mgu(l, r),

Eq. Factoring
l = r ∨ l′ = r′ ∨ C

(l = r ∨ r 6= r′ ∨ C)θ

where θ = mgu(l, l′), lθ � rθ and rθ � r′θ.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

3



Introduction Superposition AC symbols

Superposition — simplifying inferences

Tautology deletion ��
���l ∨ l ∨ C ((((

(
t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
��

��Cθ ∨D C

Subset subsumption
���

�C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

4



Introduction Superposition AC symbols

Superposition — simplifying inferences

Tautology deletion ��
���l ∨ l ∨ C ((((

(
t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
��

��Cθ ∨D C

Subset subsumption
���

�C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

4



Introduction Superposition AC symbols

Superposition — simplifying inferences

Tautology deletion ��
���l ∨ l ∨ C ((((

(
t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
��

��Cθ ∨D C

Subset subsumption
���

�C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

4



Introduction Superposition AC symbols

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality literal.

While a restricted case of demodulation, it’s also much faster.

Can be implemented with a hashtable + index of subterms. To
normalise a clause, simply traverse bottom-up and look up subterms in
the hashtable. To add a new equation, first use-it to reduce equations
already kept, then add to the hashtable.

We can also choose to add e.g. only ground equations.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

5



Introduction Superposition AC symbols

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality literal.

While a restricted case of demodulation, it’s also much faster.

Can be implemented with a hashtable + index of subterms. To
normalise a clause, simply traverse bottom-up and look up subterms in
the hashtable. To add a new equation, first use-it to reduce equations
already kept, then add to the hashtable.

We can also choose to add e.g. only ground equations.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

5



Introduction Superposition AC symbols

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality literal.

While a restricted case of demodulation, it’s also much faster.

Can be implemented with a hashtable + index of subterms. To
normalise a clause, simply traverse bottom-up and look up subterms in
the hashtable. To add a new equation, first use-it to reduce equations
already kept, then add to the hashtable.

We can also choose to add e.g. only ground equations.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

5



Introduction Superposition AC symbols

Light normalisation

We introduce the simplification rule

Light normalisation
R �

��C[l]

C[l 7→ r]

where l→ r ∈ R, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster.

Can be implemented with a hashtable + index of subterms. To
normalise a clause, simply traverse bottom-up and look up subterms in
the hashtable. To add a new equation, first use-it to reduce equations
already kept, then add to the hashtable.

We can also choose to add e.g. only ground equations.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

5



Introduction Superposition AC symbols

Simplifications

Important: lots of freedom to choose how we do simplifications.

:
• which rules to perform,
• in what order,
• when,
• and with respect to what clauses.

Also, these require indices to implement. Some indices support several
simplification rules. We must choose:
• which clauses to add to which indices,
• and when.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

6



Introduction Superposition AC symbols

Simplifications

Important: lots of freedom to choose how we do simplifications:
• which rules to perform,
• in what order,
• when,
• and with respect to what clauses.

Also, these require indices to implement. Some indices support several
simplification rules. We must choose:
• which clauses to add to which indices,
• and when.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

6



Introduction Superposition AC symbols

Simplifications

Important: lots of freedom to choose how we do simplifications:
• which rules to perform,
• in what order,
• when,
• and with respect to what clauses.

Also, these require indices to implement. Some indices support several
simplification rules. We must choose:

• which clauses to add to which indices,
• and when.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

6



Introduction Superposition AC symbols

Simplifications

Important: lots of freedom to choose how we do simplifications:
• which rules to perform,
• in what order,
• when,
• and with respect to what clauses.

Also, these require indices to implement. Some indices support several
simplification rules. We must choose:
• which clauses to add to which indices,
• and when.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

6



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

very large

small

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

slow

fast

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

7



Introduction Superposition AC symbols

Simplification setup

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

Otter

8



Introduction Superposition AC symbols

Simplification setup

Passive

Active

Given

New clauses

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

DISCOUNT

9



Introduction Superposition AC symbols

Simplification setup

Passive

Active

Given

New clauses

Fw
sim

plify

Fw/Bw

simplify

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

10



Introduction Superposition AC symbols

Simplification setup

Passive

Active

Given

New clauses

Subset subsum
p.

Light norm
.

Subsumption

Demodulation

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

11



Introduction Superposition AC symbols

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other and to their parents.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

12



Introduction Superposition AC symbols

Immediate simplification

Intuition:
• Clauses that are derived in each loop are more “related” to each
other and to their parents.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

12



Introduction Superposition AC symbols

Immediate simplification

Intuition:
• Clauses that are derived in each loop are more “related” to each
other and to their parents.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

12



Introduction Superposition AC symbols

Immediate simplification

Intuition:
• Clauses that are derived in each loop are more “related” to each
other and to their parents.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

12



Introduction Superposition AC symbols

Immediate simplification

Intuition:
• Clauses that are derived in each loop are more “related” to each
other and to their parents.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

12



Introduction Superposition AC symbols

Simplification setup

Passive

Active

Given

New clauses

Immediate simplification

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

iProver

13



Introduction Superposition AC symbols

Simplification setup — iProver

$ ./ iprover --schedule none | grep '--sup '
--sup_indices_passive [SubsetSubsumption;LightNorm]
--sup_indices_active [Subsumption;FwDemod;BwDemod]
--sup_indices_immed [SubsetSubsumption;Subsumption;LightNor . . .
--sup_indices_input [SubsetSubsumption;Subsumption;FwDemod; . . .
--sup_full_triv [TrivRules;PropSubs]
--sup_full_fw [FwDemod;ACNormalisation;FwSubsumption; . . .
--sup_full_bw [BwDemod]
--sup_immed_triv [TrivRules]
--sup_immed_fw_main [FwDemod;ACNormalisation;FwSubsumption]
--sup_immed_bw_main []
--sup_immed_fw_immed [FwDemod;FwSubsumption;FwSubsumptionRes]
--sup_immed_bw_immed [BwDemod;BwSubsumption]
--sup_input_triv [TrivRules]
--sup_input_fw [FwDemod;FwSubsumption;FwSubsumptionRes]
--sup_input_bw [BwDemod;BwSubsumption;BwSubsumptionRes]

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

14



Introduction Superposition AC symbols

AC symbols

A symbol f is associative-commutative (AC) iff

∀x, y. f(x, y) = f(y, x) ∀x, y, z. f(x, f(y, z)) = f(f(x, y), z)

AC symbols are notoriously hard to handle by saturation solvers based
on ordered rewriting (like superposition).
They are also ubiquitous in a variety of domains.

=⇒ Techniques to handle AC are important.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

15



Introduction Superposition AC symbols

AC symbols

A symbol f is associative-commutative (AC) iff

∀x, y. f(x, y) = f(y, x) ∀x, y, z. f(x, f(y, z)) = f(f(x, y), z)

AC symbols are notoriously hard to handle by saturation solvers based
on ordered rewriting (like superposition).
They are also ubiquitous in a variety of domains.

=⇒ Techniques to handle AC are important.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

15



Introduction Superposition AC symbols

AC symbols

A symbol f is associative-commutative (AC) iff

∀x, y. f(x, y) = f(y, x) ∀x, y, z. f(x, f(y, z)) = f(f(x, y), z)

AC symbols are notoriously hard to handle by saturation solvers based
on ordered rewriting (like superposition).
They are also ubiquitous in a variety of domains.

=⇒ Techniques to handle AC are important.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

15



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can

• make AC terms right-associative
• sorted wrt. some ordering.

During saturation: we are restricted by completeness.
• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can
• make AC terms right-associative

• sorted wrt. some ordering.

During saturation: we are restricted by completeness.
• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can
• make AC terms right-associative
• sorted wrt. some ordering.

During saturation: we are restricted by completeness.
• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can
• make AC terms right-associative
• sorted wrt. some ordering.

During saturation: we are restricted by completeness.

• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can
• make AC terms right-associative
• sorted wrt. some ordering.

During saturation: we are restricted by completeness.
• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC symbols

During preprocessing: we have the freedom to transform the problem
into any equisatisfiable form, so we can
• make AC terms right-associative
• sorted wrt. some ordering.

During saturation: we are restricted by completeness.
• can still make AC terms right-associative (but not at the top of a
maximal side of an equation)

• (stably) sorted wrt. the reduction ordering being used.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

16



Introduction Superposition AC symbols

AC joinability

Theorem. Let RAC be

f(x, y) = f(y, x) (1)
f(x, f(y, z)) = f(f(x, y), z) (2)
f(x, f(y, z)) = f(y, f(x, z)) (3)

if l = r is not an instance of an eq. in RAC and cannot be simplified
via a rule in RAC, then if l and r are equal modulo AC then l = r ∨ C
is a tautology and l 6= r ∨ C simplifies to C.

Tests for AC joinability are cheap!

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

17



Introduction Superposition AC symbols

AC joinability

Theorem. Let RAC be

f(x, y) = f(y, x) (1)
f(x, f(y, z)) = f(f(x, y), z) (2)
f(x, f(y, z)) = f(y, f(x, z)) (3)

if l = r is not an instance of an eq. in RAC and cannot be simplified
via a rule in RAC, then if l and r are equal modulo AC then l = r ∨ C
is a tautology and l 6= r ∨ C simplifies to C.

Tests for AC joinability are cheap!

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

17



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:
• Detect if AC axioms are derived normally in saturation,
• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:
• Detect if AC axioms are derived normally in saturation,
• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:
• Detect if AC axioms are derived normally in saturation,
• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:

• Detect if AC axioms are derived normally in saturation,
• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:
• Detect if AC axioms are derived normally in saturation,

• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Semantic AC detection

In general, f is AC if the input problem implies the AC axioms.

Usually it’s only checked if they are verbatim in the input (syntactical
detection).

Input |= AC ⇐= AC ∈ Input

The axioms may also be implied by the input problem but not be
present right away.

Important to detect AC symbols as soon as possible so we can apply
AC reasoning early. We do this in two more ways:
• Detect if AC axioms are derived normally in saturation,
• Check in preprocessing if axioms are implied via fast appro-
ximations like ground implication checking using an SMT solver.

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

18



Introduction Superposition AC symbols

Summary

• It is generally better to combine many strategies/options than to
run just one.
◦ In particular, instantiation+ superposition performs better than just

instantiation or just superposition.
• Huge freedom in choosing how to do simplifications, but no clear
path.
◦ Work on hyperparameter optimisation may help here.

• “Immediate simplification” can block many redundant generating
inferences, and is relatively inexpensive.

• AC reasoning speeds up many problems (axioms found in 12% of
TPTP (incl. by semantic detection)).

Implementing superposition in iProver (sys. desc.) André Duarte, Konstantin Korovin — IJCAR2020

19


	Introduction
	

	Superposition
	

	AC symbols
	

	
	


