
Experimenting with superposition in iProver

André Duarte and Konstantin Korovin
{andre.duarte,konstantin.korovin}@manchester.ac.uk

3 September 2019



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

iProver

• iProver is an automated theorem prover for first-order logic.

• Instantiation calculus, modular architecture.

• Refutationally complete.

• Powerful redundancy checks.

• Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

1



Introduction Superposition Simplifications

Combination provers

Rules of thumb:

• There’s no one calculus that is clearly superior,

◦ Some problems are solved easily by some techniques and not at all by
others.

• Performance degrades very fast.

◦ (Half of problems that are solved in < 5min are solved in ∼ 1 s)
◦ (∼ 90% of problems that are solved in < 5min are solved in < 30 s)

• (In iProver) clauses are shared for simplifications.

Corollary:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

2



Introduction Superposition Simplifications

Combination provers

Rules of thumb:

• There’s no one calculus that is clearly superior,

◦ Some problems are solved easily by some techniques and not at all by
others.

• Performance degrades very fast.

◦ (Half of problems that are solved in < 5min are solved in ∼ 1 s)
◦ (∼ 90% of problems that are solved in < 5min are solved in < 30 s)

• (In iProver) clauses are shared for simplifications.

Corollary:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

2



Introduction Superposition Simplifications

Combination provers

Rules of thumb:

• There’s no one calculus that is clearly superior,

◦ Some problems are solved easily by some techniques and not at all by
others.

• Performance degrades very fast.

◦ (Half of problems that are solved in < 5min are solved in ∼ 1 s)
◦ (∼ 90% of problems that are solved in < 5min are solved in < 30 s)

• (In iProver) clauses are shared for simplifications.

Corollary:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

2



Introduction Superposition Simplifications

Combination provers

Rules of thumb:

• There’s no one calculus that is clearly superior,

◦ Some problems are solved easily by some techniques and not at all by
others.

• Performance degrades very fast.

◦ (Half of problems that are solved in < 5min are solved in ∼ 1 s)
◦ (∼ 90% of problems that are solved in < 5min are solved in < 30 s)

• (In iProver) clauses are shared for simplifications.

Corollary:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

2



Introduction Superposition Simplifications

Combination provers

Rules of thumb:

• There’s no one calculus that is clearly superior,

◦ Some problems are solved easily by some techniques and not at all by
others.

• Performance degrades very fast.

◦ (Half of problems that are solved in < 5min are solved in ∼ 1 s)
◦ (∼ 90% of problems that are solved in < 5min are solved in < 30 s)

• (In iProver) clauses are shared for simplifications.

Corollary:

It’s better to run many strategies for a little time
than one strategy for a long time.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

2



Introduction Superposition Simplifications

Figure: Performance graph for provers entered CASC-26/FOF.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

3



Introduction Superposition Simplifications

Superposition

Superposition
l = r ∨ C t[s]

.
= u ∨D

(t[s 7→ r]
.
= u ∨ C ∨D)θ

where θ = mgu(l, s), lθ � rθ, tθ � uθ, and s not a variable,

Eq. Resolution
l 6= r ∨ C

Cθ

where θ = mgu(l, r),

Eq. Factoring
l = r ∨ l′ = r′ ∨ C

(l = r ∨ r 6= r′ ∨ C)θ

where θ = mgu(l, l′), lθ � rθ and rθ � r′θ.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

4



Introduction Superposition Simplifications

7 000

7 500

8 000

8 500

9 000

Superposition Instantiation Inst + Sup

P
ro

b
le

m
s

so
lv

ed

Figure: Number of problems solved over TPTP-v7.2.0, in less than 300 s.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

5



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.

◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.

◦ Examples: subsumption, tautology deletion, rewriting by unit
equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Simplifying inferences are key!

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

• Restricting generating inferences as much as possible.
◦ Examples: literal selection, dismatching constraints.

• Performing simplifying inferences to delete clauses.
◦ Examples: subsumption, tautology deletion, rewriting by unit

equalities.

Simplifying inferences are key. . .
but we can’t spend too much time on them!

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

6



Introduction Superposition Simplifications

Simplifications

Tautology deletion
��

���l ∨ l ∨ C (((
((t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
���

�
Cθ ∨D C

Subset subsumption
��

��C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

7



Introduction Superposition Simplifications

Simplifications

Tautology deletion
��

���l ∨ l ∨ C (((
((t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
���

�
Cθ ∨D C

Subset subsumption
��

��C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

7



Introduction Superposition Simplifications

Simplifications

Tautology deletion
��

���l ∨ l ∨ C (((
((t= t ∨ C

Syntactic eq. res. ���
��t 6= t ∨ C

C

Subsumption
���

�
Cθ ∨D C

Subset subsumption
��

��C ∨D C

Demodulation
l = r ��

�C[lθ]

C[lθ 7→ rθ]
,

lθ � rθ
{lθ = rθ} ≺ C

Light normalisation
l = r �

��C[l]

C[l 7→ r]
, l � r

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

7



Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster.

:

• No indexing.

• No instantiation of unit equalities.

• No ordering checks.

• Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

8



Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster:

• No indexing.

• No instantiation of unit equalities.

• No ordering checks.

• Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

8



Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster:

• No indexing.

• No instantiation of unit equalities.

• No ordering checks.

• Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

8



Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster:

• No indexing.

• No instantiation of unit equalities.

• No ordering checks.

• Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

8



Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

Light normalisation
l = r �

��C[l]

C[l 7→ r]

where l � r, and l occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it’s also much faster:

• No indexing.

• No instantiation of unit equalities.

• No ordering checks.

• Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

8



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications.

:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

• which rules to perform,

• in what order,

• when,

• and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

• which clauses to add to which indices,

• and when.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

9



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

very large

small

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Passive

Active

Given

New clauses

slow

fast

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

10



Introduction Superposition Simplifications

Simplification setup

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Otter

11



Introduction Superposition Simplifications

Simplification setup

Passive

Active

Given

New clauses

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

DISCOUNT

12



Introduction Superposition Simplifications

Simplification setup

Passive

Active

Given

New clauses

Fw
sim

plify

Fw/Bw

simplify

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

iProver

13



Introduction Superposition Simplifications

Simplification setup

Passive

Active

Given

New clauses

Subset
subsum

p.

Light
norm

.

Subsumption

Demodulation

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

iProver

14



Introduction Superposition Simplifications

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

15



Introduction Superposition Simplifications

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

15



Introduction Superposition Simplifications

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

15



Introduction Superposition Simplifications

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

15



Introduction Superposition Simplifications

Immediate simplification

Intuition:

• Clauses that are derived in each loop are more “related” to each
other.

• The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

• Can check if a new clause deletes a parent clause. If yes, then:
◦ we can throw away all its children,
◦ and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause ∪ parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

15



Introduction Superposition Simplifications

Simplification setup

Passive

Active

Given

New clauses

Subset
subsum

p.

Light
norm

.

Subsumption

Demodulation

Immediate simplification

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

iProver

16



Introduction Superposition Simplifications

Simplification setup — iProver

$ ./ iprover --schedule none | grep '--sup_ '
--sup_indices_passive [SubsetSubsumption]
--sup_indices_active [Subsumption;LightNormNoReduce;FwDemod; . . .
--sup_indices_immed [SubsetSubsumption;Subsumption;LightNor . . .
--sup_indices_input [SubsetSubsumption;Subsumption;LightNor . . .
--sup_light_triv [TrivRules]
--sup_light_fw [FwLightNorm]
--sup_light_bw []
--sup_full_triv [TrivRules;PropSubs]
--sup_full_fw [FwDemodLightNormLoopTriv;FwSubsumption . . .
--sup_full_bw [BwDemod]
--sup_immed_triv [TrivRules]
--sup_immed_fw_main [FwDemodLightNormLoopTriv;FwSubsumption . . .
--sup_immed_fw_immed [FwDemodLightNormLoopTriv;FwSubsumption . . .
--sup_immed_bw_main []
--sup_immed_bw_immed [BwDemod;BwSubsumption;BwSubsumptionRes . . .
--sup_input_triv [TrivRules]
--sup_input_fw [FwDemodLightNormLoopTriv;FwSubsumption . . .
--sup_input_bw [BwDemod;BwSubsumption;BwSubsumptionRes]

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

17



Introduction Superposition Simplifications

Summary

• It is (generally) better to combine many strategies/options than
to run just one.
◦ Instantiation + superposition is better than just instantiation or

superposition.

• Applying simplification rules is crucial for performance. But
spending too much time on them may hurt more than help.

• Huge freedom in choosing how to do them, but no clear path.
◦ Work on hyperparameter optimisation may help here.

• “Immediate simplification” may block many redundant generating
inferences, and is relatively inexpensive.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

18


	Introduction
	

	Superposition
	

	Simplifications
	

	
	


