André Duarte and Konstantin Korovin

{andre.duarte konstantin.korovin}@manchester.ac.uk

3 September 2019

MANCHESTER

The University of Manchester

o>

Introduction Superposition

iProver

e iProver is an automated theorem prover for first-order logic.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition

iProver

e iProver is an automated theorem prover for first-order logic.

e |nstantiation calculus, modular architecture.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

iProver

e iProver is an automated theorem prover for first-order logic.
e [nstantiation calculus, modular architecture.
e Refutationally complete.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

iProver

iProver is an automated theorem prover for first-order logic.

Instantiation calculus, modular architecture.

Refutationally complete.

Powerful redundancy checks.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

iProver

e iProver is an automated theorem prover for first-order logic.

e |nstantiation calculus, modular architecture.

Refutationally complete.

Powerful redundancy checks.

Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplific

iProver

e iProver is an automated theorem prover for first-order logic.

e |nstantiation calculus, modular architecture.

Refutationally complete.

Powerful redundancy checks.

Decides fragments such as EPR (winner of CASC/EPR almost
every year since 2008).

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Superposition

Combination provers

Rules of thumb:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Combination provers

Rules of thumb:
e There's no one calculus that is clearly superior,

o Some problems are solved easily by some techniques and not at all by
others.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Combination provers

Rules of thumb:
e There's no one calculus that is clearly superior,

o Some problems are solved easily by some techniques and not at all by
others.

e Performance degrades very fast.

o (Half of problems that are solved in < 5min are solved in ~15s)
o (~90% of problems that are solved in < 5 min are solved in <30s)

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Combination provers

Rules of thumb:
e There's no one calculus that is clearly superior,

o Some problems are solved easily by some techniques and not at all by
others.

e Performance degrades very fast.

o (Half of problems that are solved in < 5min are solved in ~15s)
o (~90% of problems that are solved in < 5 min are solved in <30s)

e (In iProver) clauses are shared for simplifications.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Combination provers

Rules of thumb:
e There's no one calculus that is clearly superior,

o Some problems are solved easily by some techniques and not at all by
others.

e Performance degrades very fast.

o (Half of problems that are solved in < 5min are solved in ~15s)
o (~90% of problems that are solved in < 5 min are solved in <30s)

e (In iProver) clauses are shared for simplifications.

Corollary:

It's better to run many strategies for a little time
than one strategy for a long time.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Superposition

300 F—v | ENEER R R T | — |EEERE I Ty T
. Vamp e 4? : : H H Ini H H)
Ampire 4.0
250 t E2 1 4

cvda NAR-1.5.2 |
iProver 2.6
200 ¢ Leo-lIl 1/1 4
lean-nanoCoP 1.0 4
Appergin 1.1
150 | Proverd 11004
iProverMeg2 . 5-0. 1

100

CPU time in seconds

50 -

50 100 150 200 250
Solution number

Figure: Performance graph for provers entered CASC-26/FOF.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Superposition

l=rvC tls)]=uVvD
(tfs—r]=uVvCV D)

Superposition

where § = mgu(l, s), 10 £ 6, t0 £ ub, and s not a variable,

l#rvC

Eq. Resoluti
q. Resolution ol
where 6 = mgu(l,),

l=rvi=rvC
(Il=rvr#rvC)o

Eq. Factoring

where 6§ = mgu(l,1’), 160 £ r0 and 70 £ '6.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Superposition

9000

8500 r .
e
2
g 8000 - .
£
[
o 7500 | g
o
a

7000 |- .

Superposition Instantiation Inst + Sup

Figure: Number of problems solved over TPTP-v7.2.0, in less than 300s.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:
e Restricting generating inferences as much as possible.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:
e Restricting generating inferences as much as possible.
o Examples: literal selection, dismatching constraints.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

e Restricting generating inferences as much as possible.
o Examples: literal selection, dismatching constraints.

e Performing simplifying inferences to delete clauses.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

e Restricting generating inferences as much as possible.
o Examples: literal selection, dismatching constraints.

e Performing simplifying inferences to delete clauses.

o Examples: subsumption, tautology deletion, rewriting by unit
equalities.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

e Restricting generating inferences as much as possible.
o Examples: literal selection, dismatching constraints.

e Performing simplifying inferences to delete clauses.

o Examples: subsumption, tautology deletion, rewriting by unit
equalities.

Simplifying inferences are key!

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

As the number of kept clauses increases, the performance of the
prover degrades.

We can control this by:

e Restricting generating inferences as much as possible.
o Examples: literal selection, dismatching constraints.

e Performing simplifying inferences to delete clauses.

o Examples: subsumption, tautology deletion, rewriting by unit
equalities.

Simplifying inferences are key. . .
but we can't spend too much time on them!

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Simplifications

Suy

perposition Simplifications

Tautology deletion

Syntactic eq. res.

Subsumption

Subset subsumption

Demodulation

o
covD C
CcvD C

l=r C0] 16>r6

Clig—rg) "~ {l0=r0} <C

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Simplifications

Suy

perposition Simplifications

Tautology deletion

Syntactic eq. res.

Subsumption

Subset subsumption

Demodulation

o
covD C
CcvD C

l=r C0] 16>r6

Clig—rg) "~ {l0=r0} <C

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Simplifications

Superposition Simplifications

Tautology deletion

Syntactic eq. res.

Subsumption

Subset subsumption

Demodulation

Light normalisation

IVIVO t=tvC

tA£<tvC

o
covD C
CcvD C

l=r C0] 16>r6

Clig—rg) "~ {l0=r0} <C

l=r oty .,

Cll]

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule
. =
Light normalisation —7“%
C[l —]
where [> r, and [occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it's also much faster.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

| =
Light normalisation —7“%

C[l —]
where [> r, and [occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it's also much faster:

e No indexing.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

| =
Light normalisation —7“%

C[l —]
where [> r, and [occurs outside a maximal side of an equality
literal.
While a restricted case of demodulation, it's also much faster:
e No indexing.

e No instantiation of unit equalities.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule

| =
Light normalisation —7“%

C[l —]

where [> r, and [occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it's also much faster:
e No indexing.

e No instantiation of unit equalities.

e No ordering checks.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Light normalisation

We introduce the simplification rule
I =
Light normalisation —7“%
C[l —]

where [> r, and [occurs outside a maximal side of an equality
literal.

While a restricted case of demodulation, it's also much faster:

No indexing.

e No instantiation of unit equalities.

No ordering checks.

Long demodulation chains are done in 1 step.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:

e which rules to perform,

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:
e which rules to perform,

e in what order,

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:
e which rules to perform,

e in what order,

e when,

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:
which rules to perform,

e in what order,
e when,
[]

and with respect to what clauses.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:
which rules to perform,

in what order,

e when,

and with respect to what clauses.

Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction

Superposition

Simplifications

Simplifications

Important: lots of freedom to choose how we do simplifications:
which rules to perform,

in what order,

e when,

and with respect to what clauses.
Also, these require indices to implement. Some indices support
several simplification rules. We must choose:

e which clauses to add to which indices,
e and when.

Experimenting with superposition in iProver

André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

very large | Passive @ j<-----------------—-

Given ¢

small | Active f-——---- New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup — Given clause loop overview

slow | Passive <-----------------———-

Given ¢

fast | Active fF--———--- New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup

Otter

Given ¢

fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup

DISCOUNT

Given ¢

fo\&
+++++++

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup

iProver

Al
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)

‘ fffffff New clauses [----

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019

Introduction Superposition Simplifications

Simplification setup

iProver

Given ¢
! Subsumption

‘ Demodulation
~~~~~~~

Al
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Simplifications

Immediate simplification

Intuition:

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition Simplifications

Immediate simplification

Intuition:

e Clauses that are derived in each loop are more “related” to each
other.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition Simplifications

Immediate simplification

Intuition:

e Clauses that are derived in each loop are more “related” to each
other.

e The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition

Simplifications

Immediate simplification

Intuition:

e Clauses that are derived in each loop are more “related” to each
other.

e The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.

e Can check if a new clause deletes a parent clause. If yes, then:
o we can throw away all its children,
o and avoid trying to generate any new clauses with it.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition

Simplifications

Immediate simplification

Intuition:

e Clauses that are derived in each loop are more “related” to each
other.

e The passive set grows very large, but the set of new clauses in each
loop stays comparatively small.
e Can check if a new clause deletes a parent clause. If yes, then:

o we can throw away all its children,
o and avoid trying to generate any new clauses with it.

Hypothesis: it may be useful to keep new clause U parents
inter-simplified.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition Simplifications

Simplification setup

iProver

i Subsumption
‘ Demodulation
‘ ~~~~~~~

Immediate simplification

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition Simplifications

Simplification setup — iProver

$ ./iprover --schedule none grep

--sup_indices_passive [SubsetSubsumption]

--sup_indices_active [Subsumption;LightNormNoReduce; FwDemod; ...
--sup_indices_immed [SubsetSubsumption; Subsumption;LightNor...
--sup_indices_input [SubsetSubsumption; Subsumption;LightNor...
--sup_light_triv [TrivRules]

--sup_light_fw [FwLightNorm]

--sup_light_bw []

--sup_full_triv [TrivRules;PropSubs]

--sup_full_fw [FwDemodLightNormLoopTriv; FwSubsumption...
--sup_full_bw [BwDemod]

--sup_immed_triv [TrivRules]

--sup_immed_fw_main [FwDemodLightNormLoopTriv; FwSubsumption...
--sup_immed_fw_immed [FwDemodLightNormLoopTriv; FwSubsumption...
--sup_immed_bw_main []

--sup_immed_bw_immed [BwDemod; BwSubsumption;BwSubsumptionRes...
--sup_input_triv [TrivRules]

--sup_input_fw [FwDemodLightNormLoopTriv; FwSubsumption...
--sup_input_bw [BwDemod ; BwSubsumption;BwSubsumptionRes]

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



Introduction Superposition Simplifications

Summary

e It is (generally) better to combine many strategies/options than
to run just one.

o Instantiation + superposition is better than just instantiation or
superposition.

e Applying simplification rules is crucial for performance. But
spending too much time on them may hurt more than help.

e Huge freedom in choosing how to do them, but no clear path.
o Work on hyperparameter optimisation may help here.

¢ “Immediate simplification” may block many redundant generating
inferences, and is relatively inexpensive.

Experimenting with superposition in iProver André Duarte, Konstantin Korovin — 3 September 2019



	Introduction
	

	Superposition
	

	Simplifications
	

	
	


